A Discrete/Continuous Minimization Method in Interferometric Image Processing
نویسندگان
چکیده
The 2D absolute phase estimation problem, in interferometric applications, is to infer absolute phase (not simply modulo-2π) from incomplete, noisy, and modulo-2π image observations. This is known to be a hard problem as the observation mechanism is nonlinear. In this paper we adopt the Bayesian approach. The observation density is 2π-periodic and accounts for the observation noise; the a priori probability of the absolute phase is modeled by a first order noncausal Gauss Markov random field (GMRF) tailored to smooth absolute phase images. We propose an iterative scheme for the computation of the maximum a posteriori probability (MAP) estimate. Each iteration embodies a discrete optimization step (Z-step), implemented by network programming techniques, and an iterative conditional modes (ICM) step (π-step). Accordingly, we name the algorithm ZπM, where letter M stands for maximization. A set of experimental results, comparing the proposed algorithm with other techniques, illustrates the effectiveness of the proposed method.
منابع مشابه
Reflection methods for user-friendly submodular optimization
Recently, it has become evident that submodularity naturally captures widely occurring concepts in machine learning, signal processing and computer vision. Consequently, there is need for efficient optimization procedures for submodular functions, especially for minimization problems. While general submodular minimization is challenging, we propose a new method that exploits existing decomposab...
متن کاملPURIFY: a new approach to radio-interferometric imaging
In a recent article series, the authors have promoted convex optimization algorithms for radio-interferometric imaging in the framework of compressed sensing, which leverages sparsity regularization priors for the associated inverse problem and defines a minimization problem for image reconstruction. This approach was shown, in theory and through simulations in a simple discrete visibility sett...
متن کاملSolving Dense Image Matching in Real-Time using Discrete-Continuous Optimization
Dense image matching is a fundamental lowlevel problem in Computer Vision, which has received tremendous attention from both discrete and continuous optimization communities. The goal of this paper is to combine the advantages of discrete and continuous optimization in a coherent framework. We devise a model based on energy minimization, to be optimized by both discrete and continuous algorithm...
متن کاملJoint Filtering of Sar Interferometric Phase and Amplitude Data in Urban Areas by Tv Minimization
This paper investigates the use of a popular regularization model, the Total Variation minimization (TV), to lter SAR interferometric images (amplitude and phase data). This model has been extensively used for its property of edge preservation and is therefore well adapted for urban areas. Using a TV model adapted to multi-dimensionnal data, we propose to do a joint ltering of phase and amplitu...
متن کاملDesigning an Algorithm for Cancerous Tissue Segmentation Using Adaptive K-means Cluttering and Discrete Wavelet Transform
Background: Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic imagesrequire accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. Objective: This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001